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� Challenges to EUVL deployment

� Special light source for mask inspection

� ZETA-Z* RMHD codes

� Non-equilibrium plasma kinetic model
plasma radiance limit
highly charged Xe ion EUV emission

� Combined Nd:YAG-CO2 laser pulse

� Nano-UV: EUV and soft X-ray source

� Multiplexed high brightness EUV sources
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EUV (13.5nm wavelength) lithographyEUV (13.5nm wavelength) lithography
chosen for chosen for nanonanofeatures microchip productionfeatures microchip production

HP

EUV source for HVM & actinic mask inspectionEUV source for HVM & actinic mask inspection
-- a key challenge facing the industry a key challenge facing the industry 
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Remaining Focus AreasRemaining Focus Areas

- light source for Litho and mask inspection critical -

EUVL Symposium, Tahoe 
2008

EUVL Symposium, Prague 
2009

1 - Long-term source operation 
with 100 W at the IF and 5 
megajoule per day

2 - Availability of defect-free 
masks, throughout a mask 
lifecycle, and the need to 
address critical mask 
infrastructure tool gaps, 
specifically in the defect 
inspection and defect review 
area

3 - …

1 - Mask yield & defect 
inspection/review 
infrastructure

2 - Long-term source operation 
with 115 W at the IF for 
5mJ/cm2 resist sensitivity or 
with 200W at the IF for 
10mJ/cm2 resist sensitivity

3 - …



COST 
MP0601 

WG & MC 
Meetings
27-28 May 

2010 
Krakow 
Poland

5

Consider a CCD array (n×n) detector, pixel size Ap, being 
used to image the area of the mask under inspection

- magnification of imaging optics, m, hence area to detect 
a defect is now Ai=Ap/m

2, and the total illuminated patch 
area on mask observed is A=Ai·n

2 

- relative defect response > N photon statistics

- total illumination time:  t =tA·M·m2/n2·Ap

- illuminating irradiance required:

*additional time for 

positioning and 

alignment needed 

in each exposure

EUV EUV BrightfieldBrightfield MetrologyMetrology
-- requirementsrequirements

M

D
NA

N

A

Ai

- then for defect size 10 nm, a (9µm)2 pixel size, 20482 CCD 
array and full size (42×(26×33) mm2) mask inspection:

22

4

ntD
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A
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⋅
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⋅

Magnification, m 40 80 160

Patch area, A (um2) 5.06E-02 1.27E-02 3.16E-03

Illuminating flux density (ph/cm2) 5.47E+15 1.37E+15 3.42E+14

Na illuminating A 1.16E+13 7.26E+11 4.54E+10

Irradiance at mask needed, 10 shots exposure (ph/s cm2) 2.74E+18 6.84E+17 1.71E+17

Mask exposure time (min) 2.16E+00 8.62E+00 3.45E+01

(reflectivity R≈60%)
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Actinic Mask Inspection Actinic Mask Inspection 
-- key source requirementskey source requirementsbased on current studiesbased on current studies

- High-brightness, small-etendue, high-repetition-rate, and clean light 
source is preferable

Source Workshop 2009 
Baltimore 
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EUV Light SourceEUV Light Source
-- in practicein practice

• Sn, Xe, Li … high energy density plasma - narrow 2% band

@ 13.5nm source of EUV light

• LPP & DPP - methods to produce the the right conditions HED plasma

- kW (source) ⇒⇒⇒⇒ W (IF) is 

the source of the problem -

combined 
NdYAG +CO 2

• For HVM  - at least 200-500 W of in-band power @ IF 

with etendue < 3mm2sr is required 

DPP

Z * MHD code modeling

LPP

micro plasma
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ZETA ZETA →→ ZZ* * RMHD Code RMHD Code →→ ZZ* * BMEBME
physical modelphysical model

Tables (T e,ρ) for solid matter & for LTE, 
non-LTE plasmas of ion compositions:
EOS ; ionization distribution ; rates; non-
maxwell electrons ; spectral group radiation 
&  transport coefficients

EEMHD in real cylindrical geometry:
dynamics of electrons →→→→ change to 3D PIC ;
ionization of weekly ionized plasma
(hollow cathode ionization wave)

DPPDPP
simulationsimulation

in real geometryin real geometry

LPPLPP

Data: (r,z, v,Te,I ,ρ,E, B, 
Z,Uω, etc);
time evolution (I,P ω

,W, Fω , etc);
visualization

Spectral postprocessing: 
3D ray tracing; 
detailed spectra

Heat flux 
postprocessing:
element lifetime 
estimation ;
fast particle flux, 3D PIC

RMHD with energy supply :
(r,z+φ) plasma dynamics in ( E,B)r,φ,z;
nonstationary , nonLTE ionization; 
spectral multigroup radiation 
transport in nonLTE with special 
spectral groups (for EUV,laser ); solid 
elements sublimation, condensation , 
expansion into plasma

- Improved
- new
- coming
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No energy balance!

Numeric
al

diffusion
!

Adaptive grid

Detailed grid?

Adaptive grid

?

Lagrange variables

Grid
crossing

!

RMHD LAGRANGE-
EULER 

VARIABLES

COMPLETELY 
CONSERVATIVE,

IMPLICIT 
SCHEME

Small time step! 
(→→→→zero for plasma 
in magnetic field)

Euler variables Explicit scheme is stable conditionally

Non-conservative scheme

PHYSICAL
SOLUTION

ZETA ZETA →→ ZZ* * RMHD Code RMHD Code →→ ZZ* * BMEBME
mathematical model: algorithms & schemesmathematical model: algorithms & schemes
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EUV Brightness Limit of a Source EUV Brightness Limit of a Source 

.- the Conversion Efficiency of a single source 
decreases if the in-band EUV output increases 

(at the same operation frequency)

Z* Scan

g2/cm5

g2/cm5

• The intensity upper Planckian limit of a single 
spherical optically thick plasma source in ∆λ/λ=2% 
band around λ=13.5nm 

• Source with pulse duration τ and repetition rate f 
yields the time-average radiance            L =I·(τ f)

• At T≈22eV L ≈ 1.1(W/mm2 sr)·τ(ns)·f(kHz)
• For τ =20÷50ns     L = 20÷50 (W/mm2 sr)/kHz.    

• Plasma self-absorption defines the limiting 
brightness of a single EUV source and  required 
radiance

• The plasma parameters where EUV radiance is a 
maximum are not the same as that when the spectral 
efficiency is a maximum.
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ns-order CO2 laser
(main pulse)

sub-ns Nd:YAG laser
(pre-pulse)

Target Chamber

Beam splitter

Collector Mirror

Sn Droplet Target

EUV / 13.5nm

Combined Combined Nd:YAGNd:YAG -- COCO22 Laser SystemLaser System
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Z

R

Nd:YAG CO2delay time ∆t

1.064µm 10.6µm

100 times lower density in case of a CO2 laser with respect 
to a Nd:YAG laser as the main pulse gives a chance 

• to increase the EUV emission efficiency by lower 
reabsorption of EUV radiation

• to reduce debris using a small-size, i.e. low-mass, 
target

Combined Combined Nd:YAGNd:YAG -- COCO22 Laser System Laser System 
-- layoutlayout
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LPP Dynamics & EUV EmissionLPP Dynamics & EUV Emission
during preduring pre-- and main laser pulseand main laser pulse

2.5mJ YAG laser pre-
pulse energy. 

Main laser pulse: CO2, 
50mJ, 15ns, 100 µm 
FWHM spot size. 

The delay time 
between laser pulses 
is 75ns.
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20um Sn droplet, Nd:YAG: 2.5 & 5mJ, 10ns, 20um spot  size;
CO2: 50mJ & 100mJ, 15ns with 100um spot size; all f whm
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Target: 20µm diameter Sn droplet
Pre-pulse laser: Nd:YAG, 10ns fwhm, 20µm spot size, pulse energy 2.5 & 5mJ
Main pulse: CO2-laser, 15, 37 and 60ns fwhm, 100µm spot size

Conversion Efficiency Conversion Efficiency 
vs. prevs. pre--pulse to pulse delay timepulse to pulse delay time
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EUV brightness up to EUV brightness up to 
5 W/mm5 W/mm22 srsr kHzkHz
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EUV IF Power Limitation: EUV IF Power Limitation: 
prediction vs. observationprediction vs. observation

•• Xenon plasma EUV emissionXenon plasma EUV emission

Experimental observation of limitation of the 
EUV  power at IF from xenon DPP source

[M. Yoshioka et al. Alternative Litho. Tech. 
Proc. of SPIE, vol. 7271 727109-1 (2009)]

Xenon plasma parameter scan 
with Z*-code showing the 
EUV radiance limitation

xenon
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T Kato et al. J. Phys. 
B: At. Mol. Opt. 
Phys. 41 (2008)
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Z* Scan

• XeXXII - XeXXX
produce bright 4f-4d*, 4d-4p*, 5p-4d* 
[White, O’Sulivan](3dn4f1 + 3dn4p1 →
3dn4d1) satellites in EUV range near 
13.5nm

• XeXXII has ionization potential 619eV

Bright EUV Emission Bright EUV Emission 
from highly charged xenon ionsfrom highly charged xenon ions

Tokamak experimental data • There are two regimes in 
transparent plasma of xenon: Low 
- Temperature (LT) with XeXI 
and High - Temperature (HT) 
with XeXVII-XeXXX ions 
contributing into 2% bandwidth 
at 13.5nm.

• For small size xenon plasma, the 
maximum EUV radiance in the 
HT can exceed the tin plasma 
emission
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NonNon--Equilibrium Kinetics Equilibrium Kinetics 
XeXe ions population vs. eions population vs. e-- fractionfraction

details in poster: Vasily Zakharov
“Modeling of EUV spectra from nonequilibrium
xenon plasma with high energy electrons”
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Emission of  Highly Charged Emission of  Highly Charged XeXe IonsIons
-- from efrom e--beam triggered discharge plasmabeam triggered discharge plasma
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EUV Measurement
Capillary discharge. VUV spectrograph data

Bright EUV emission in 2% band at 13.5 nm can be achieved from highly 
charged xenon ions in plasma with small percentage of fast electrons

details in the poster: Vasily Zakharov “Modeling of EUV spectra 
from nonequilibrium xenon plasma with high energy electrons”
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MultiplexingMultiplexing
-- a solution for high power & brightnessa solution for high power & brightness

- problem is the physical size of SoCoMo

Z* Scan

tin
• Small size sources, with low enough etendue

E1=AsΩ << 1 mm2 sr can be multiplexed.

• The EUV power of multiplexed N sources is

⇒ The EUV source power meeting the 
etendue requirements increases as N1/2

• This allows efficient re-packing of radiators 
from 1 into N separate smaller volumes without 
losses in EUV power

fNEPEUV ⋅⋅Ω⋅⋅∝ τ

• Spatial-temporal multiplexing: The average brightness of a source and 
output power can be increased by means of spatial-temporal multiplexing with 
active optics system, totallizing sequentially the EUV outputs from multiple 
sources in the same beam direction without extension of the etendue or collection 
solid angle
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Data: Data3_Maxpulse
Model: Gauss 
  
Chi^2/DoF = 49.85204
R^2 =  0.98823
  
y0 3.77513 ±1.93219
xc -0.18904 ±0.07521
w 6.2617 ±0.17896
A 1384.74832 ±43.18075

 Profil@44cm  (19kV20mtorr )
 Gauss fit of Data3_Maxpulse
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NanoNano--UV: UV: High Brightness EUV SourceHigh Brightness EUV Source
capillary discharge pulsed microcapillary discharge pulsed micro--plasmaplasma

GEN-II CYCLOPS cells

Measured Performance
• use SXUV20 Mo/Si filtered diode (IRD) 

coated (110 nm Al) on Si3N4 (50 nm) to 
reject OoB

• 3 nm EUV band (12.4 nm -15.4 nm)
• coated (110 nm Al) on Si3N4 (50 nm) to 

reject OoB
• irradiance measured at 44 cm -
• 0.8 W/cm2/s at 1 kHz, 19 kV
• beam FWHM - 7.4 mm, (1/e2) spot = 12.5 

mm
• EUV power at beam spot - 0.44W at 1 kHz
• typical etendue 5.10-3 to 1.10-2 mm2.sr
• discharge in He/Ar/Xe admixture
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Source CharacteristicsSource Characteristics
-- wavefrontwavefrontmeasurementmeasurement

• EUV beam diameter d= 9.75 mm at 
1890 mm from source

• Beam divergence half angle =0.19°

• Solid angle ΩΩΩΩ = 0.0345 msr

• Etendue E = 2π R· ΩΩΩΩ · RMS

= 5 ·10-5 mm2sr

Derived wavefront
166 nm RMS (12 λλλλ) 

& 760nm PV (58 λλλλ)

HASO X-EUV Shack Hartmann wavefront sensor - (manufactured by Imagine Optic)

1890 mm

HASOEUV source

* With support of G. Dovillaire, E. 
Lavergne from Imagine Optic and P. 
Mercere, M.Idir from SOLEIL 
Synchrotron

Acquired image
60s exposure, 
source at 1 kHz
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Power source
Charge energy   0.1 – 0.5 J
Current         5 - 10 kA
Pulse             ~10-20 ns

Capillary       ∅∅∅∅ 0.8-1.6 mm
dimension: L =  12-18 mm

Various electrode geometries

Gas: 
0.1-1mbar Ar+He; 

Xe, Sn, Li, Kr, N, … admixtures
(for narrow-band  radiation source)

Experimental set up

Example of
simulated
geometry

capillary

Energy storage
capacitor

EUV

Capillary discharge dynamics & emission features:

E-beam, plasma channelling (εεεε>>1)

Volumetric MHD compression (skin depth >>plasma diameter)  

Highly ionized ions (fast electrons)             

Capillary discharge dynamics & emission features:

E-beam, plasma channelling (εεεε>>1)

Volumetric MHD compression (skin depth >>plasma diameter)  

Highly ionized ions (fast electrons)             

Capillary Discharge EUV SourceCapillary Discharge EUV Source
typical parameterstypical parameters
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Pre-ionization in capillary discharge (ion density ni ):
- axial beam of run-away electrons,

- ionization of the gas by beam and secondary electr ons,
- the ionization wave forces out the electric field

Ionization cross-section of argon atoms

Capillary Discharge EUV SourceCapillary Discharge EUV Source
electron beam and ionization waveelectron beam and ionization wave
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At EUV emission 
maximum
ρρρρ =5⋅⋅⋅⋅10-7g/cm 3, Те=18eV.

Without taking into 
account of fast electrons 
the plasma ionization 
degree is <Z>=7.3;
EUV yield is 6 µµµµJ.

WITH 0.1% of fast 
electrons <Z>=8.8;

EUV yield is 30 µµµµJ (26 µµµµJ
in experiment).

Capillary Discharge EUV SourceCapillary Discharge EUV Source
increasing ionization degree effectincreasing ionization degree effect

3D volumetric 
compressionPlasma density dynamics
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19kV charge, 1.2 nF capacitor >19kV charge energy scan
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� plasma dynamics 
� spectral radiation transport
� non-equilibrium atomic kinetics with fast electrons 
� transport of fast ions/electrons
� condensation, nucleation and transport nanosize particles.

• Modelling can be the key factor to scientific and technological solutions in EUVL 
source optimization with fast particles and debris to solve current EUVL source 
problems as well as extending their application to 22nm and beyond.

• The research and transfer of knowledge is focused on two major modeling
applications;

� EUV source optimization for lithography and 
� nanoparticle production for nanotechnology.

• Theoretical modelling will be benchmarked by LPP and DPP experiments

Next Generation Modelling ToolsNext Generation Modelling Tools
-- FP7 IAPP project FP7 IAPP project FIREFIRE

• Theoretical models and robust modeling tools are 
developed under international collaboration in the frames of 
European FP7 IAPP project FIRE

• The FIRE project aims to substantially redevelop the Z* 
code to include improved atomic physics models and full 3-
D plasma simulation of
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HYDRAHYDRA™™--ABI ABI 
-- spatial multiplexing for blank inspectionspatial multiplexing for blank inspection

• Design Specifications
– 60 W/mm2.sr in-band 2% EUV radiant 

brightness at the IF

– 0.6 W at the IF

– etendue 10-2 mm2.sr

– source area - 31 mm2 / TBD

– optimized for mask blank inspection

– 4x i-SoCoMo units working at 3 kHz 
each

– no debris / membrane filter

– close packed pupil fill

• Current Status
– 4 units integration & characterization

– single unit optimization

– ML mirrors evaluation & modelling
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HYDRAHYDRA44--ABIABI ™™

-- pupil arrangementspupil arrangements

Source 1 only Source 2 only

Source 4 only Source 3 only

Each source turned on separately and aligned to a different corner

• Radiation observed on a fluorescent screen 70 cm downstream

ALL 4 Sources

All 4 sources aligned to a point

25 mm
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• Design Specifications 
– 100 W/mm2.sr in-band 2% EUV brightness

– 2.4W at the IF

– etendue - 2.4 10-2 mm2.sr (50% fill pupil)

– source area - 4 mm2 / variable sigma

– optimized for aerial image measurements

– 12x i-SoCoMo units, 5 kHz working each

– no debris / membrane filter

– variable pupil fill and sigma

• Current Status
– system characterization

– single unit optimization

– ML mirrors modelling

curved ML

plane ML

HYDRAHYDRA™™--AIMSAIMS
-- spatial multiplexing with variable sigmaspatial multiplexing with variable sigma
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HYDRAHYDRA1212--AIMSAIMS™™

-- prototype systemprototype system

A EUV Source for Mask Metrology
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HYDRAHYDRA™™--APMI APMI 
-- unique temporal & spatial multiplexingunique temporal & spatial multiplexing

• Design Specifications 
– 1200 W/mm2.sr in-band EUV radiant brightness

– 2.4 W at the IF

– etendue - 2. 10-3 mm2.sr

– source area - 20 mm2

– optimized for patterned mask inspection

– 8x i-SoCoMo units working at 3 kHz each

– 24 kHz temporally multiplexed

– no debris / membrane filter

– Gaussian output spot

• Current Status
– optics design & modelling

– single unit optimization

– mechanical design
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• Knowledge of the behaviour of multicharged ion non-equilibrium plasma with 
ionization phenomena, radiation and fast particles transfer is critical for EUV 
source development

• Self-absorption defines the limiting brightness of a single EUV source, required 
for the HVM and AIM tools with high efficiency at given the limiting etendue 
of the optics

• Extra EUV in-band emission  may be achieved from highly charged Xe ions in 
plasma with fast electrons

• The required irradiance can be achieved by spatial multiplexing, using multiple 
small sources

• NANO-UV presents a high brightness EUV light source unit, incorporating the 
i-SoCoMo technology, together with early experiences of operating sources 
in a multiplexed configuration, which can satisfy the source power and 
brightness requirements for an at-line tools for actinic mask inspection and in 
future for HVM .

SummarySummary
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• R&D team & collaborators

– R&D team of EPPRA and Nano-UV

– Pontificia Universidad Catolica de Chile

– RRC Kurchatov Institute, Moscow, Russia

– Keldysh Institute of Applied Mathematics 
RAS, Moscow, Russia

– University College Dublin

– King’s College London

– EUVA, Manda Hiratsuka, Japan

• Sponsors - EU & French Government
– ANR- EUVIL
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20 20 µµm m SnSn--droplet,droplet,
2.5mJ 2.5mJ Nd:YAGNd:YAG prepre--pulse, 10ns pulse, 10ns fwhmfwhm
50mJ CO50mJ CO22 mainmain--pulse, 15ns pulse, 15ns fwhmfwhm
75ns delay time between both laser pulses75ns delay time between both laser pulses

in-band EUV, 2.5mJ pre-pulse, 50mJ main, 75ns delay
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• heating of the electrodes by joule dissipation at electrode-plasma 
transition;

thermal instability:

• surface heating & plasma cooling by means of plasma thermal 
conduction;

• surface heating and damage by plasma radiation;

• optical elements damage by fast ions & atoms emitted from the 
plasma (ambipolar and E-field acceleration, shocks, Maxwell tails 
etc).

T
θ

σ~σ(T) 0 σ

j
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T
c
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v =
∂
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tdγ
0 eTT ∫=
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cθσ
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PlasmaPlasma--electrode interaction mechanismselectrode interaction mechanisms
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(zoomed)(zoomed)

Heat loading on electrodes Heat loading on electrodes and insulatorand insulator
Z*BME Z*BME modellingmodelling
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